Abstract

In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higher-order nonlinear Schrödinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters α and β which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.