Abstract

In this work we study localized electric potentials that have an arbitrarily high energy on some given subset of a domain and low energy on another. We show that such potentials exist for general L ∞ -conductivities in almost arbitrarily shaped subregions of a domain, as long as these regions are connected to the boundary and a unique continuation principle is satisfied. From this we deduce a simple, but new, theoretical identifiability result for the famous Calderon problem with partial data. We also show how to con- struct such potentials numerically and use a connection with the factorization method to derive a new non-iterative algorithm for the detection of inclusions in electrical impedance tomography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call