Abstract

Beyond the extensively studied microcavity polaritons, which are coupled modes of semiconductor excitons and microcavity photons, nearly 2D semiconductors placed in a suitable environment can support spatially localized exciton–polariton modes. We demonstrate theoretically that two distinct types of such modes can exist in a photonic crystal with an embedded transition metal dichalcogenide (TMD) monolayer and derive an equation that determines their dispersion relations. The localized modes of two types occur in the zeroth- and first-order stop bands of the crystal and have substantially different properties. The latter type of localized modes, which appear inside the light cone, can be described as a result of coupling of the TMD exciton and an optical Tamm state of the TMD-intercalated photonic crystal. We suggest an experiment for detecting these modes and simulate it numerically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.