Abstract

We investigate an SIRS epidemic model with spatial diffusion and nonlinear incidence rates. We show that for small diffusion rate of the infected class [Formula: see text], the infected population tends to be highly localized at certain points inside the domain, forming K spikes. We then study three distinct destabilization mechanisms, as well as a transition from localized spikes to plateau solutions. Two of the instabilities are due to coarsening (spike death) and self-replication (spike birth), and have well-known analogues in other reaction-diffusion systems such as the Schnakenberg model. The third transition is when a single spike becomes unstable and moves to the boundary. This happens when the diffusion of the recovered class, [Formula: see text] becomes sufficiently small. In all cases, the stability thresholds are computed asymptotically and are verified by numerical experiments. We also show that the spike solution can transit into an plateau-type solution when the diffusion rates of recovered and susceptible class are sufficiently small. Implications for disease spread and control through quarantine are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.