Abstract

We consider a two-component pancake-shaped, i.e., effectively two-dimensional (2D), Bose-Einstein condensate (BEC) coupled by the spin-orbit (SO) and Rabi terms. The SO coupling adopted here is of the mixed Rashba-Dresselhaus type. For this configuration, we derive a system of two 2D nonpolynomial Schr\"odinger equations (NPSEs), for both attractive and repulsive interatomic interactions. In the low- and high-density limits, the system amounts to previously known models, namely, the usual 2D Gross-Pitaevskii equation, or the Schr\"odinger equation with the nonlinearity of power 7/3. We present simple approximate localized solutions, obtained by treating the SO and Rabi terms as perturbations. Localized solutions of the full NPSE system are obtained in a numerical form. Remarkably, in the case of the attractive nonlinearity acting in free space (i.e., without any 2D trapping potential), we find parameter regions where the SO and Rabi couplings make 2D fundamental solitons dynamically stable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call