Abstract
We suggest approximate penetration models for rigid body penetration that take into account sliding velocity (SV) and pressure dependence of the friction coefficient (FC). It is showed that introducing variable FC in a localized interaction model (LIM) yields a model that belongs to the class of LIM. We developed a general method for determining the depth of penetration (DOP) using the piecewise linear approximation of the impactor’s generatrix. For some classes of SV dependent friction models we obtained analytical formulas for calculating the DOP. Using the experimental data available in the literature, we determined the dependencies of FC vs. pressure and SV. We conducted numerical modeling of penetration of a metal striker into metal and concrete shields employing models with variable and constant FC. Numerical simulations showed that taking into account variable FC strongly effects the DOP when FC changes appreciably for large velocities that are characteristic for the high-speed penetration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.