Abstract

We solve elliptic systems of equations posed on highly heterogeneous materials. Examples of this class of problems are composite structures and geological processes. We focus on a model problem which is a second-order elliptic equation with discontinuous coefficients. These coefficients represent the conductivity of a composite material. We assume a background with a low conductivity that contains inclusions with different thermal properties. Under this scenario, we design a multiscale finite element method to efficiently approximate solutions. The method is based on an asymptotic expansion of the solution in terms of the ratio between the conductivities. The resulting method constructs (locally) finite element basis functions (one for each inclusion). These bases generate the multiscale finite element space where the approximation of the solution is computed. Numerical experiments show the good performance of the proposed methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call