Abstract

ABSTRACT This study presents an alternative approach to the numerical solution of 2D electromagnetic scattering problems using a hybrid numerical technique based on a beam pattern function combined with the method of moments (MoM). A surface field distribution with finite width radiates outward, and it is used to define the new Green's function. This new Green's function has a beam aperture localized on the surface, and its beam width can be reduced to a few basis function levels by using a generalized pencil of beam function method (GPOF). This localization of the new Green's function brings to the sparsity in the main matrix. Then, the memory storage and the overall running times are reduced significantly by applying this localized radiation of Green's function. Numerical results have been presented in both polarizations for the single perfectly electrically conducting (PEC) strip geometry and 2D PEC objects with closed polygonal cross-sections such as square, triangle and arbitrary shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.