Abstract
Upper and lower bounds are derived for the Gaussian mean width of a convex hull of $M$ points intersected with a Euclidean ball of a given radius. The upper bound holds for any collection of extreme points bounded in Euclidean norm. The upper bound and the lower bound match up to a multiplicative constant whenever the extreme points satisfy a one sided Restricted Isometry Property. An appealing aspect of the upper bound is that no assumption on the covariance structure of the extreme points is needed. This aspect is especially useful to study regression problems with anisotropic design distributions. We provide applications of this bound to the Lasso estimator in fixed-design regression, the Empirical Risk Minimizer in the anisotropic persistence problem, and the convex aggregation problem in density estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.