Abstract

We theoretically investigate one-dimensional localized gap modes in a coherent atomic gas where an optical lattice is formed by a pair of counterpropagating far-detuned Stark laser fields. The atomic ensembles under study emerge as Λ-type three-level configuration accompanying the effect of electromagnetically induced transparency (EIT). Based on Maxwell-Bloch equations and the multiple scales method, we derive a nonlinear equation governing the spatial-temporal evolution of the probe-field envelope. We then uncover the formation and properties of optical localized gap modes of two kinds, such as the fundamental gap solitons and dipole gap modes. Furthermore, we confirm the (in)stability regions of both localized gap modes in the respective band-gap spectrum with systematic numerical simulations relying on linear-stability analysis and direct perturbed propagation. The predicted results may enrich the nonlinear horizon to the realm of coherent atomic gases and open up a new door for optical communication and information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call