Abstract

AbstractAirglow patches have been recently associated with channels of enhanced antisunward ionospheric flows propagating across the polar cap from the dayside to nightside auroral ovals. However, how these flows maintain their localized nature without diffusing away remains unsolved. We examine whether patches and collocated flows are associated with localized field‐aligned currents (FACs) in the polar cap by using coordinated observations of the Swarm spacecraft, a polar cap all‐sky imager, and Super Dual Auroral Radar Network (SuperDARN) radars. We commonly (66% of cases) identify substantial FAC enhancements around patches, particularly near the patches' leading edge and center, in contrast to what is seen in the otherwise quiet polar cap. These FACs have densities of 0.1–0.2 μA/m−2 and have a distribution of width peaking at ~75 km. They can be approximated as infinite current sheets that are orientated roughly parallel to patches. They usually exhibit a Region 1 sense, i.e., a downward FAC lying eastward of an upward FAC. With the addition of Resolute Bay Incoherent Scatter radar data, we find that the FACs can close through Pedersen currents in the ionosphere, consistent with the locally enhanced dawn‐dusk electric field across the patch. Our results suggest that ionospheric polar cap flow channels are imposed by structures in the magnetospheric lobe via FACs, and thus manifest mesoscale magnetosphere‐ionosphere coupling embedded in large‐scale convection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.