Abstract

AbstractTwo thrusts occur on Ross Island: the Head of Ross Thrust and the more southerly Ross Island Thrust. These lie to the north of the Killarney–Mallow Fault (KMF), the boundary frequently interpreted as the Variscan Front. The Ross Island Thrust, exposed in outcrop and in seven borehole cores, has emplaced dark blue–grey limestones of the Courceyan Ballysteen Formation over pale grey–brown Rockfield Limestone Formation of Chadian–Holkerian age. These lithologies at Ross Island exhibit a continuum of deformation at both the micro‐ and macro‐scale, beginning with the generation of a spaced cleavage, formed during layer parallel shortening, that was subsequently rotated into parallelism with fold axial planes. Extensional microstructures are predominant in thin section and are associated with attenuation of the fold limb. Calcite veins are also attenuated and lie parallel to a mylonitic fabric close to the thrust plane. Lithological boundaries, the prominent pressure solution cleavage and the southerly dipping limb of an asymmetrical antiform are all parallel and form a composite planar anisotropy. This has controlled the location of the ductile Ross Island Thrust, which formed during the attenuation and shearing of a common fold limb. Ductile thrusts within the limestones at Ross Island contrast with the reactivation of basin‐margin extensional faults further to the south along the major KMF. The Ross Island Thrust is considered to result from deformation ahead of the major northerly propagating Variscan décollement thrust and does not necessitate a continuous décollement structure north of the KMF. Mineralization at Ross Island exhibits remobilization associated with the formation of a pressure‐solution cleavage and probably pre‐dates thrusting. Copyright © 2003 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.