Abstract

We propose an efficient Adaptive Random Convolutional Network Coding (ARCNC) algorithm to address the issue of field size in random network coding. ARCNC operates as a convolutional code, with the coefficients of local encoding kernels chosen randomly over a small finite field. The lengths of local encoding kernels increase with time until the global encoding kernel matrices at related sink nodes all have full rank. Instead of estimating the necessary field size a priori, ARCNC operates in a small finite field. It adapts to unknown network topologies without prior knowledge, by locally incrementing the dimensionality of the convolutional code. Because convolutional codes of different constraint lengths can coexist in different portions of the network, reductions in decoding delay and memory overheads can be achieved with ARCNC.We show through analysis that this method performs no worse than random linear network codes in general networks, and can provide significant gains in terms of average decoding delay in combination networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.