Abstract

Islet transplantation has been considered the most promising therapeutic option with the potential to restore the physiological regulation of blood glucose concentrations in type 1 diabetes treatment. However, islets suffer from oxidative stress and nonspecific inflammation in the early stage of transplantation, which attributed to the leading cause of islet graft failure. Our previous study reported that bilirubin exerted antioxidative and anti-inflammatory effects on hypothermic preserved islets, which inspire us to utilize bilirubin to address the survival issue of grafted islets. However, the application of bilirubin for islet transplantation is limited by its poor solubility and fast clearance. In this study, we designed a supramolecular carrier (PLCD) that could improve the solubility of bilirubin and slowly release bilirubin to protect islets after cotransplantation. PLCD was synthesized by conjugating activated β-cyclodextrin (β-CD) to the side chain of ε-polylysine (PLL) and acted as a carrier to load bilirubin via host-guest interactions. The constructed bilirubin supramolecular system (PLCD-BR) significantly improved the solubility and prolonged the action time of bilirubin. In vitro results confirmed that PLCD-BR coculture substantially enhanced the resistance of islets to excessive oxidative stress and proinflammatory stimulation and maximumly maintained the islet function. In vivo, PLCD could prolong drug duration at the transplant site, and the localized released bilirubin could protect the islets from oxidative stress and suppress the production of inflammatory cytokines. Crucially, islet transplantation with PLCD-BR significantly extended the stable blood glucose time of diabetic mice and produced a faster glucose clearance compared to those cotransplanted with free bilirubin. Additionally, immunohistochemical analysis showed that PLCD-BR had superior antioxidative and anti-inflammatory abilities and beneficial effects on angiogenesis. These findings demonstrate that the PLCD-BR has great potentials to support successful islet transplantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call