Abstract

We study acoustic and electromagnetic waves in a periodic medium (or any other background medium with a spectral gap) disturbed by a single defect, i.e., a local disturbance analogous to a well potential in solid state physics. We show that defects do not change the essential spectrum of the associated nonnegative operators and can only create isolated eigenvalues of finite multiplicity in a gap of the periodic medium, with the eigenmodes decaying exponentially. We give a constructive and simple description of defects in acoustic and dielectric media, including a simple condition on the parameters of the medium and of the defect, which ensures the rise of a localized eigenmode with the corresponding eigenvalue in a specified subinterval of the given gap of the periodic medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.