Abstract

Reducing the excitation threshold to minimize the Joule heating is critical for the realization of perovskite laser diodes. Although bound excitons are promising for low threshold laser, how to generate them at room temperature for laser applications is still unclear in quasi-2D perovskite-based devices. In this work, via engineering quasi-2D perovskite PEA2 (CH3 NH3 )n -1 Pbn Br3 n +1 microscopic grains by the anti-solvent method, room-temperature multiexciton radiative recombination is successfully demonstrated at a remarkably low pump density of 0.97 µJ cm-2 , which is only one-fourth of that required in 2D CdSe nanosheets. In addition, the well-defined translational momentum in quasi-2D perovskite grains can restrict the Auger recombination which is detrimental to radiative emission. Furthermore, the quasi-2D perovskite grains are favorable for increasing binding energies of excitons and biexcitons and so as the related radiative recombination. Consequently, the prepared <n= 8> phase quasi-2D perovskite film renders a threshold of room-temperature stimulated emission as low as 13.7 µJ cm-2 , reduced by 58.6% relative to the amorphous counterpart with larger grains. The findings in this work are expected to facilitate the development of solution-processable perovskite multiexcitonic laser diodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.