Abstract
Based on the calculation and analysis of local Green’s functions of impurity atoms of low concentration in a two-dimensional graphene lattice, the conditions for the formation and characteristics of local discrete levels with energies lying outside the band of the quasi-continuous spectrum and quasi-localized states with energies near the Fermi one are determined. Specific calculations were performed for boron and nitrogen impurity atoms, which can actually replace carbon in graphite and graphene nanostructures. For a boron impurity that forms local discrete levels outside the band of the quasi-continuous spectrum, sufficiently simple analytical expressions for the conditions for their formation, energy, intensity at the impurity atom, and damping parameter are obtained. An analysis of the formation of states quasi-localized on nitrogen impurities with energy near the Fermi level in graphene nanostructures was carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.