Abstract

Maintaining connectivity is essential in multi-hop wireless networks since the network topology cannot be pre-determined due to mobility and environmental effects. To maintain the connectivity, a critical point in the network topology should be identified where the critical point is the link or node that partitions the network when it fails. In this paper, we propose a new critical point identification algorithm and also present numerical results that compare the critical points of the network and H-hop sub-network illustrating how effectively sub-network information can detect the network-wide critical points. Then, we propose two localized topological control resilient schemes that can be applied to both global and local H-hop sub-network critical points to improve the network connectivity and the network resilience. Numerical studies to evaluate the proposed schemes under node and link failure network conditions show that our proposed resilient schemes increase the probability of the network being connected in variety of link and node failure conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.