Abstract

Dementia of the Alzheimer type (DAT) is associated with the accumulation of beta-amyloid (A beta) peptides derived from beta-amyloid precursor protein (APP). Goldstein and coworkers have suggested that APP acts as a cargo receptor connecting post-Golgi vesicles and motor proteins. Sisodia and colleagues have suggested that APP is a passive passenger within the vesicles. Both views predict that one should be able to visualize colocalizations of APP with microtubules, the object of the present investigation. To avoid possible artifacts created by APP overexpression, we studied endogenous expression in a human neuroblastoma cell line (SK-N-SH). Using high resolution fluorescence microscopy and antibodies specific for the amino termini of APP and A beta sequences, we found that endogenous APP and A beta peptide immunoreactivities colocalized with microtubules in interphase cells. Disruption of microtubules, followed by fixation at various time points during repolymerization, allowed us to observe the sequence and timing of these colocalizations in interphase cells. In addition, to our surprise, we found that A beta immunoreactivities colocalize with the mitotic spindle, a bundle of specialized microtubules. Because of the condensed cytoplasm found in neurons, we suggest that SK-N-SH cells might be a more convenient experimental system for exploring the mechanisms that underlie these protein localizations and the pathology that might result from altered APP protein structure and function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.