Abstract

Chemical graph theory (CGT) starts by defining matrices that represent the molecular graph then proceed to extract numbering-independent matrix invariants to be used as molecular descriptors in empirical quantitative structure to activity (or property) relationships (QSAR/QSPR). Two proposed matrix representations of molecular structure are presented in this chapter as alternatives to simple connectivity molecular graphs. Firstly, it is proposed to use a more “nuanced” connectivity matrix by weighing the “ones” entered in a CGT molecular graph matrix by the bond critical point electron densities associated with each bond path to yield what we term the “electron density-weighted adjacency/connectivity matrices (EDWAM/EDWCM)”. In a second approach, it is proposed to use the localization and delocalization indices of the quantum theory of atoms in molecules (QTAIM) to construct a richer representation of the molecular graph, a “fuzzy” graph, whereby an edge exists between any two atoms (measured by the delocalization index between them) whether they share a bond path or not. Such a fuzzy graph is represented by what we term “electron localization-delocalization matrix (LDM)”. We show that the LDM representations of a series of molecules provide a powerful tool for robust QSAR/QSPR modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.