Abstract

Spectral and dynamical properties of electrons, phonons, electromagnetic waves, and nonlinear coherent excitations in one-dimensional modulated structures with long-range correlations are investigated from a theoretical point of view. First a proof of singular continuous electron spectrum for the tight-binding Schrodinger equation with an on-site potential, which, in analogy with a random potential, has an absolutely continuous correlation measure, is given. The critical behavior of such a localization phenomenon manifests in anomalous diffusion for the time-evolution of electronic wave packets. Spectral characterization of elastic vibrations in aperiodically ordered diatomic chains in the harmonic approximation is achieved through a dynamical system induced by the trace maps of renormalized transfer matrices. These results suggest that the zero Lebesgue measure Cantor-set spectrum (without eigenvalues) of the Fibonacci model for a quasicrystal is generic for deterministic aperiodic superlattices, for which the modulations take values via substitution rules on finite sets, independent of the correlation measure. Secondly, a method to synthesize and analyze discrete systems with prescribed long-range correlated disorder based on the conditional probability function of an additive Markov chain is effectively implemented. Complex gratings (artificial solids) that simultaneously display given characteristics of quasiperiodic crystals and amorphous solids on the Fraunhofer diffraction are designated. A mobility edge within second order perturbation theory of the tight-binding Schrodinger equation with a correlated disorder in the dichotomic potential realizes the success of the method in designing window filters with specific spectral components. The phenomenon of self-localization in lattice dynamical systems is a subject of interest in various physical disciplines. Lattice solitons are studied using the discrete nonlinear Schrodinger equation with on-site potential, modeling coherent structures in, for example, photonic crystals. The instability-induced dynamics of the localized gap soliton is found to thermalize according to the Gibbsian equilibrium distribution, while the spontaneous formation of persisting intrinsic localized modes from the extended out-gap soliton reveals a phase transition of the solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call