Abstract

We numerically investigate localization properties of electronic states in a static model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers with realistic parameters obtained by quantum-chemical calculation. The randomness in the on-site energies caused by the electron-phonon coupling is completely correlated to the off-diagonal parts. In the single electron model, the effect of the hydrogen-bond stretchings, the twist angles between the base pairs and the finite system size effects on the energy dependence of the localization length and on the Lyapunov exponent are given. The localization length is reduced by the influence of the fluctuations in the hydrogen bond stretchings. It is also shown that the helical twist angle affects the localization length in the poly(dG)-poly(dC) DNA polymer more strongly than in the poly(dA)-poly(dT) one. Furthermore, we show resonance structures in the energy dependence of the localization length when the system size is relatively small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.