Abstract

By engineering laser-atom interactions, both Hall ribbons and Hall cylinders as fundamental theoretical tools in condensed matter physics have recently been synthesized in laboratories. Here, we show that turning a synthetic Hall ribbon into a synthetic Hall cylinder could naturally lead to localization. Unlike a Hall ribbon, a Hall cylinder hosts an intrinsic lattice, which arises due to the periodic boundary condition in the azimuthal direction, in addition to the external periodic potential imposed by extra lasers. When these two lattices are incommensurate, localization may occur on a synthetic Hall cylinder. Near the localization-delocalization transitions, physical observables strongly depend on the axial magnetic flux, providing us a sensitive means to probe either the transition or the axial flux using one another. In the irrational limit, physical observables are no longer affected by the axial flux, signifying a scheme to suppress decoherence induced by fluctuations of the axial flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call