Abstract

Fractures associated with osteoporosis are a significant public health risk, and one that is likely to increase with an ageing population. However, many osteoporotic vertebral fractures present on images do not come to clinical attention or lead to preventative treatment. Furthermore, vertebral fracture assessment (VFA) typically depends on subjective judgement by a radiologist. The potential utility of computer-aided VFA systems is therefore considerable. Previous work has shown that Active Appearance Models (AAMs) give accurate results when locating landmarks on vertebra in DXA images, but can give poor fits in a substantial subset of examples, particularly the more severe fractures. Here we evaluate Random Forest Regression Voting Constrained Local Models (RFRV-CLMs) for this task and show that, while they lead to slightly poorer median errors than AAMs, they are much more robust, reducing the proportion of fit failures by 68 %. They are thus more suitable for use in computer-aided VFA systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call