Abstract

Myo1, a heavy chain of type I myosin of the fission yeast Schizosaccharomyces pombe, is essential for sporulation. Here we have analyzed the expression, localization and cellular function of the type I myosin light chain calmodulin, Cam2, encoded by cam2(+). Transcription of cam2(+) was constitutive and markedly enhanced in meiosis. The cam2 null mutant was viable and completed sporulation normally at 28 degrees C, but formed four-spored asci poorly at 34 degrees C. In those sporulation-defective cells, the forespore membrane was formed abnormally. A Cam2-GFP fusion protein accumulated at the cell poles in interphase cells and at the medial septation site in postmitotic cells, colocalizing with Myo1 and F-actin patches. During the mating process, a single Cam2-GFP dot was detected at the tip of the mating projection. During meiosis-I, the Cam2-GFP dots dispersed into the cell periphery and the cytoplasm. At metaphase-II, intense Cam2-GFP signals appeared near Meu14 rings which were formed at the leading edge of expanding forespore membranes. This localization of Cam2 was dependent upon Myo1; and sporulation defect of cam2Delta at 34 degrees C was alleviated by overexpressing Myo1DeltaIQ. These results suggest a close relationship between Cam2 and Myo1. In addition, both F-actin and Myo1 localized with Cam2 in the leading edge region. In summary, type I myosin and F-actin accumulate at the leading edge area of the forespore membrane and may play a pivotal role in its assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.