Abstract

Localization phenomena of quantum walks makes the propagation dynamics of a walker strikingly different from that corresponding to classical random walks. In this paper, we study the localization phenomena of four-state discrete-time quantum walks on two-dimensional lattices with coin operators as one-parameter orthogonal matrices that are also permutative, a combinatorial structure of the Grover matrix. We show that the proposed walks localize at its initial position for canonical initial coin states when the coin belongs to classes which contain the Grover matrix that we consider in this paper, however, the localization phenomena depends on the coin parameter when the class of parametric coins does not contain the Grover matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.