Abstract

We consider the LQR controller design problem for spatially-invariant systems on the real line where the state space is a Sobolev space. Such problems arise when dealing with systems describing wave or beam-bending motion. We demonstrate that the optimal state feedback is a spatial convolution operator with an exponentially decaying kernel, enabling implementation with a localized architecture. We generalize analogous results for the L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> setting and provide a rigorous explanation of numerical results previously observed in the Sobolev space setting. The main tool utilized is a transformation from a Sobolev to an L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> space, which is constructed from a spectral factorization of the spatial frequency weighting matrix of the Sobolev norm. We show the equivalence of the two problems in terms of the solvability conditions of the LQR problem. As a case study, we analyze the wave equation; we provide analytical expressions for the dependence of the decay rate of the optimal LQR feedback convolution kernel on wave speed and the LQR cost weights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.