Abstract

Although approximately 1 in 10,000 animal species is capable of parthenogenetic reproduction, the evolutionary causes and consequences of such transitions remain uncertain. The microcrustacean Daphnia pulex provides a potentially powerful tool for investigating these issues because lineages that are obligately asexual in terms of female function can nevertheless transmit meiosis-suppressing genes to sexual populations via haploid sperm produced by environmentally induced males. The application of association mapping to a wide geographic collection of D. pulex clones suggests that sex-limited meiosis suppression in D. pulex has spread westward from a northeastern glacial refugium, conveyed by a dominant epistatic interaction among the products of at least four unlinked loci, with one entire chromosome being inherited through males in a nearly nonrecombining fashion. With the enormous set of genomic tools now available for D. pulex, these results set the stage for the determination of the functional underpinnings of the conversion of meiosis to a mitotic-like mode of inheritance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.