Abstract

The character of the surface state wave function on regularly stepped Cu(111) is reinvestigated. It is shown that the qualitative change at terrace lengths around 17 A observed previously by Ortega et al. [Phys. Rev. Lett. 84, 6110 (2000)]] must necessarily be described as a change from a propagating superlattice state to a terrace-confined quasi-one-dimensional state. This reconciles previous, apparently contradictory experimental results and sheds new light on the behavior of nearly free electrons in nanostructures. Possible mechanisms driving the localization are discussed on the basis of the surface state bulk penetration depth, which has been measured in both regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.