Abstract

Functionalization of planar and curved glass surfaces with spiropyran (SP) molecules and localized UV-induced activation of the mechanophore are demonstrated. Fluorescence spectra of UV-irradiated SP-functionalized surfaces reveal that increases in surface roughness or curvature produce more efficient conversion of the mechanophore to the open merocyanine (MC) form. Further, force-induced activation of the mechanophore is achieved at curved glass-polymer interfaces and not planar interfaces. Minimal fluorescence signal from UV-irradiated SP-functionalized planar glass surfaces precluded mechanical activation testing. Curved glass-polymer interfaces are prepared by SP functionalization of E-glass fibers, which are subsequently embedded in a poly(methyl methacrylate) (PMMA) matrix. Mechanical activation is induced through shear loading by a single fiber microbond testing protocol. In situ detection of SP activation at the interface is monitored by fluorescence spectroscopy. The fluorescence increase during interfacial testing suggests that attachment of the interfacial SP molecule to both fiber surface and polymer matrix is present and able to achieve significant activation of SP at the fiber-polymer matrix interface. Unlike previous studies for bulk polymers, SP activation is detected at relatively low levels of applied shear stress. By linking SP at the glass-polymer interface and transferring load directly to that interface, a more efficient mechanism for eliciting the SP response is achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call