Abstract

In situ hybridization histochemistry was performed to analyse the distribution of the messenger RNA (mRNA) of three putative somatostatin (SRIF) receptors in rat brain, using oligonucleotide probes derived from the cDNA coding for SSTR-1, SSTR-2, and SSTR-3 receptors. SSTR-1 signals were found in layers V-VI of the cerebral cortex, in primary olfactory cortex, taenia tecta, subiculum, entorhinal cortex, granular layer of the dentate gyrus, amygdala and cerebellar nuclei. Signals for SSTR-2 were found in the frontal cerebral cortex (layers IV, V and VI), taenia tecta, claustrum, endopiriform nucleus, locus coeruleus, medial habenula, subiculum, granular cell layer of the dentate gyrus and amygdala. High levels of SSTR-3 hybridization were found in the olfactory bulb, primary olfactory cortex, islands of Calleja, medial habenula, amygdala, granular layer of the dentate gyrus, various thalamic and pontine nuclei and in the granular and Purkinje cell layers of the cerebellum. The distribution of the hybridization signals of the oligoprobes is consistent with the labelling of specific SRIF binding sites in rat brain. Especially, SSTR-2 and SSTR-1 oligos seem to label regions in which SS-1 and SS-2 receptors, respectively, have been previously characterized in autoradiographical studies. The situation is less clear with SSTR-3 mRNA, since SRIF binding in adult rats is usually low or absent in cerebellum, although some cerebellar nuclei appear to be labelled in the adult. The localization of SSTR-1, SSTR-2 and SSTR-3 mRNAs suggests that SRIF receptor subtypes in rat brain show profound differences in their distribution and are involved in a variety of central, in addition to neuroendocrine, functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call