Abstract

Modelling carbon mineralisation in natural soils is a major topic in soil and climate research. Current models need to be improved to include soil structure as an influencing factor to better predict C fluxes between pedosphere and atmosphere and to estimate carbon sequestration potentials. Geometry-based mechanistic modelling approaches have recently been developed to systematically study the effect of soil structure on carbon decomposition. Such models require spatially explicit input parameters describing the architecture of the pore space and the heterogeneous distribution of microbes and organic matter as decomposable substrate. The latter is very difficult to determine in situ, resulting in increased uncertainty in the models. To obtain more realistic input data, we have developed a novel approach to locate soil organic matter (SOM) in undisturbed aggregates of soil using a combination of synchrotron-based X-ray microtomography and osmium as a staining agent for SOM. Here, we present the first results using 5 mm sized soil aggregate samples with contrasting C-contents in which we obtained maps of organic matter distributions in relation to the pore networks at the aggregate scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.