Abstract

The digenetic trematode Schistosoma mansoni that causes the form of schistosomiasis found in the Western Hemisphere requires the freshwater snail Biomphalaria glabrata as its primary intermediate host. It has been proposed that the transition from the free-living S. mansoni miracidium to parasitic mother sporocyst depends on uptake of biogenic amines, e.g. serotonin, from the snail host. However, little is known about potential sources of serotonin in B. glabrata tissues. This investigation examined the localization of serotonin-like immunoreactivity (5HTli) in the central nervous system (CNS) and peripheral tissues of B. glabrata. Emphasis was placed on the cephalic and anterior pedal regions that are commonly the sites of S. mansoni miracidium penetration. The anterior foot and body wall were densely innervated by 5HTli fibers but no peripheral immunoreactive neuronal somata were detected. Within the CNS, clusters of 5HTli neurons were observed in the cerebral, pedal, left parietal, and visceral ganglia, suggesting that the peripheral serotonergic fibers originate from the CNS. Double-labeling experiments (biocytin backfill × serotonin immunoreactivity) of the tentacular nerve and the three major pedal nerves (Pd n. 10, Pd n. 11, and Pd n. 12) disclosed central neurons that project to the cephalopedal periphery. Overall, the central distribution of 5HTli neurons suggests that, as in other gastropods, serotonin regulates the locomotion, reproductive, and feeding systems of Biomphalaria. The projections to the foot and body wall indicate that serotonin may also participate in defensive, nociceptive, or inflammation responses. These observations identify potential sources of host-derived serotonin in this parasite-host system. Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.