Abstract

Rabbit antibodies to RNA polymerase I from a rat hepatoma have been used to localize the enzyme in a variety of cells at the light and electron microscopic level. In interphase cells the immunofluorescence pattern indicated that polymerase I is contained exclusively within the nucleolus. That this fluorescence, which appeared punctated rather than uniform, represented transcriptional complexes of RNA polymerase I and rRNA genes was suggested by the observation that it was enhanced in regenerating liver and in a hepatoma and was markedly diminished in cells treated with actinomycin D. Electron microscopic immunolocalization using gold-coupled second antibodies showed that transcribed rRNA genes are located in, and probably confined to, the fibrillar centers of the nucleolus. In contrast, the surrounding dense fibrillar component, previously thought to be the site of nascent pre-rRNA, did not contain detectable amounts of polymerase I. During mitosis, polymerase I molecules were detected by immunofluorescence microscopy at the chromosomal nucleolus organizer region, indicating that a considerable quantity of the enzyme remains bound to the rRNA genes. From this we conclude that rRNA genes loaded with polymerase I molecules are transmitted from one cell generation to the next one and that factors other than the polymerase itself are involved in the modulation of transcription of DNA containing rRNA genes during the cell cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.