Abstract
In this paper, we propose a new method for the localization of RFID tags, by deploying off-the-shelf RFID equipment on a robotic platform. The constructed robot is capable to perform Simultaneous Localization (of its own position) and Mapping (SLAM) of the environment and then locate the RFID tags around its path. The proposed method is based on properly treating the measured phase of the backscattered signal by each tag at the reader’s antenna, located on top of the robot. More specifically, the measured phase samples are reconstructed, such that the $2\pi $ discontinuities are eliminated (phase-unwrapping). This allows for the formation of an optimization problem, which can be solved rapidly by standard methods. The proposed method is experimentally compared against the SAR/imaging methods, which represent the accuracy benchmark in prior-art, deploying off-the-shelf equipment. It is shown that the proposed method solves exactly the same problem as holographic-imaging methods, overcoming the grid-density constraints of the latter. Furthermore, the problem, being calculations-grid-independent, is solved orders of magnitude faster, allowing for the applicability of the method in real-time inventorying and localization. It is also shown that the state-of-the-art SLAM method, which is used for the estimation of the trace of the robot, also suffers from errors, which directly affect the accuracy of the RFID localization method. Deployment of reference RFID tags at known positions, seems to significantly reduce such errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.