Abstract

BackgroundLow regeneration ability limits biotechnological breeding approaches. The influence of genotype in the regeneration response is high in both tomato and other important crops. Despite the various studies that have been carried out on regeneration genetics, little is known about the key genes involved in this process. The aim of this study was to localize the genetic factors affecting regeneration in tomato.ResultsWe developed two mapping populations (F2 and BC1) derived from a previously selected tomato cultivar (cv. Anl27) with low regeneration ability and a high regeneration accession of the wild species Solanum pennellii (PE-47). The phenotypic assay indicated dominance for bud induction and additive effects for both the percentage of explants with shoots and the number of regenerated shoots per explant. Two linkage maps were developed and six QTLs were identified on five chromosomes (1, 3, 4, 7 and 8) in the BC1 population by means of the Interval Mapping and restricted Multiple QTL Mapping methods. These QTLs came from S. pennellii, with the exception of the minor QTL located on chromosome 8, which was provided by cv. Anl27. The main QTLs correspond to those detected on chromosomes 1 and 7. In the F2 population, a QTL on chromosome 7 was identified on a similar region as that detected in the BC1 population. Marker segregation distortion was observed in this population in those areas where the QTLs of BC1 were detected. Furthermore, we located two tomato candidate genes using a marker linked to the high regeneration gene: Rg-2 (a putative allele of Rg-1) and LESK1, which encodes a serine/threonine kinase and was proposed as a marker for regeneration competence. As a result, we located a putative allele of Rg-2 in the QTL detected on chromosome 3 that we named Rg-3. LESK1, which is also situated on chromosome 3, is outside Rg-3. In a preliminary exploration of the detected QTL peaks, we found several genes that may be related to regeneration.ConclusionsIn this study we have identified new QTLs related to the complex process of regeneration from tissue culture. We have also located two candidate genes, discovering a putative allele of the high regeneration gene Rg-1 in the QTL on chromosome 3. The identified QTLs could represent a significant step toward the understanding of this process and the identification of other related candidate genes. It will also most likely facilitate the development of molecular markers for use in gene isolation.

Highlights

  • Low regeneration ability limits biotechnological breeding approaches

  • Data obtained in F1 for B do not significantly differ from those obtained for S. pennellii

  • The correlation between Productivity rate (PR) and both B and R was lower. This could imply that other genes may be influencing the PR trait and/or variations between different biological samples are higher in PR

Read more

Summary

Introduction

Low regeneration ability limits biotechnological breeding approaches. The influence of genotype in the regeneration response is high in both tomato and other important crops. The process of in vitro shoot organogenesis usually involves a hormonal response of somatic cells, the dedifferentiation of differentiated cells in order to acquire organogenic competence, cell division of the responding cell(s) and initiation and development of new shoots from the newly dividing cell(s), either directly or indirectly through a callus stage [11,12]. Genes that encode or regulate cytokinins and auxin may clearly influence regeneration. Both types of growth regulators act synergistically to promote cell division and antagonistically to promote shoot and root initiation from callus cultures [14]. The expression patterns of other Arabidopsis ERF VIII-b subgroup genes may be involved in early events of shoot regeneration [20]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call