Abstract

The localization of the hybrid modes of phonons and photons in polar matter is investigated in the presence of random scatterers theoretically. We employ the self-consistent generalized Born-Huang approach to derive effective equations describing the phonon-polariton fields. Based on these equations, the density of states and various localization properties are exploited in two-dimensional systems both analytically and numerically within the framework of the Anderson model with a non-Hermitian effective Hamiltonian. Consequently, it is shown that the disorder effect brings some intriguing features which include the appearance of the localized states in the polariton bottleneck in the energy spectrum and the collapse of the energy gap. In addition, an analysis is given of the polariton level-spacing distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.