Abstract

Parathyroid hormone (PTH)-related peptide (PTHrP) has been identified in human tumors associated with the syndrome of humoral hypercalcemia of malignancy. PTHrP mRNA is also expressed in a variety of non-malignant tissues, suggesting that PTHrP is an endogenous peptide with as-yet unidentified autocrine or paracrine functions in normal tissues, including brain (Weir et al., Proc. Natl. Acad. Sci., 87 (1990) 108-112). In the present study, we used in situ hybridization to examine the expression of PTHrP and the common receptor for PTH and PTHrP in adult rat brain. Widespread yet anatomically discrete patterns of hybridization were observed using 35S-labeled antisense cRNA probes. PTHrP gene expression was highest in the supramamillary nucleus of the hypothalamus, medial superior olivary nucleus, and in subpopulations of cells in the neostriatum, hippocampus, and cerebral cortex. Other major sites of PTHrP gene expression included the amygdala, midline thalamic nuclei, pontine nuclei, choroid plexus, and the anterior pituitary gland. Highest levels of PTH/PTHrP receptor mRNA were in the mesencephalic portion of the trigeminal nucleus and the trigeminal ganglion, the lateral reticular, pontine and reticulotegmental nuclei, the hypoglossal nucleus and area postrema. Other major sites of PTH/PTHrP receptor expression included the anterodorsal nucleus of the thalamus, basolateral amygdala, entorhinal cortex, parasubiculum, cells in the Purkinje cell layer of the cerebellum, vestibular nuclei, ventral cochlear nucleus, the motor nucleus of the trigeminal, and the facial and external cuneate nuclei. The expression of genes encoding PTHrP and its receptor in discrete areas of the brain suggests that PTHrP may function as a neurotransmitter in the central nervous system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call