7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1103/physrevb.106.134208
Copy DOIJournal: Physical Review B | Publication Date: Oct 26, 2022 |
Citations: 2 |
Pair localization in one-dimensional quasicrystals with nearest-neighbor hopping is independent of whether short-range interactions are repulsive or attractive. We numerically demonstrate that this symmetry is broken when the hopping follows a power law $1/r^{\alpha}$. In particular, for repulsively bound states, we find that the critical quasiperiodicity that signals the transition to localization is always bounded by the standard Aubry-Andr\'e critical point, whereas attractively bound dimers get localized at larger quasiperiodic modulations when the range of the hopping increases. Extensive numerical calculations establish the contrasting nature of the pair energy gap for repulsive and attractive interactions, as well as the behavior of the algebraic localization of the pairs as a function of quasiperiodicity, interaction strength, and power-law hops. The results here discussed are of direct relevance to the study of the quantum dynamics of systems with power-law couplings.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.