Abstract

The outermost layer of the mammalian skin, the stratum corneum (SC), is a very thin structure and realizes simultaneously the main barrier properties. The penetration barrier for xenobiotica is mostly represented by a complex lipid matrix. There is great interest in the subject of getting information about the arrangement of the lipids, which are mainly ceramides (CER), free fatty acids (FFA) and cholesterol (CHOL). SC lipid model membranes containing synthetically derived lipids in a non-physiological ratio were investigated. To compare the study to a former experiment, a methyl-branched ceramide [EOS] species in presence of the ultra-long chain CER[AP], CHOL and behenic acid (23/10/33/33, wt%) was applied. The membrane structure was studied using the very versatile technique of neutron diffraction. We were able to identify a long-periodicity phase (LPP) with a size of 114Å or 118Å with CER[EOS]-br in a ratio of >60wt% of the ceramides. Furthermore, we figured out two additional coexisting short-periodicity phases (SPP) with repeat distances of 48Å and 45Å, respectively. Partial deuterations of CER[EOS]-br and CER[AP] enabled the localization of the molecules within the multiphase system. CER[EOS]-d3 was present in the LPP, but absent in both SPP. CER[AP]-d3 was determined in both short phases but not localized within the LPP. Besides, we revealed influences of humidity and time with respect to the long-periodicity phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call