Abstract

After presenting string-like solutions with a warp factor to Einstein's equations, we study localization of various spin fields on a string-like defect in a general space–time dimension from the viewpoint of field theory. It is shown that spin 0 and 2 fields are localized on a defect with the exponentially decreasing warp factor. Spin 1 field can be also localized on a defect with the exponentially decreasing warp factor. On the other hand, spin one-half and three-half fields can be localized on a defect with the exponentially increasing warp factor, provided that additional interactions are not introduced. Thus, some mechanism of localization must be invoked for these fermionic fields. These results are very similar to those of a domain wall in five space–time dimensions except the case of spin 1 field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.