Abstract

The tissue distribution and ontogeny of Na(+)/K(+)-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na(+)/K(+)-ATPase with the polyclonal antibody alpha (H-300) raised against the human alpha1-subunit of Na(+)/K(+)-ATPase. Na(+)/K(+)-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na(+)/K(+)-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na(+)/K(+)-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na(+)/K(+)-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 +/- 32.4 micromol g (FM) (-1) h(-1)) than in those of L. vulgaris (31.8 +/- 3.3 micromol g (FM) (-1) h(-1)). S. officinalis gills and pancreatic appendages achieved activities of 94.8 +/- 18.5 and 421.8 +/- 102.3 micromol(ATP) g (FM) (-1) h(-1), respectively. High concentrations of Na(+)/K(+)-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO(2)) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.