Abstract

Using exact quantum MonteCarlo calculations, we examine the interplay between localization of electronic states driven by many-body correlations and that by randomness in a two-dimensional system featuring linearly vanishing density of states at the Fermi level. A novel disorder-induced nonmagnetic insulating phase is found to emerge from the zero-temperature quantum critical point separating a semimetal and a Mott insulator. Within this phase, a phase transition from a gapless Anderson-like insulator to a gapped Mott-like insulator is identified. Implications of the phase diagram are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call