Abstract

The rev gene product of human immunodeficiency virus (HIV) is obligatory for viral replication. Rev interacts specifically with a structured RNA sequence within the viral genome termed the REV response element (RRE). Although the importance of Rev for the expression of viral proteins is well documented, its functional mechanism remains unresolved. Previous studies identified Rev in the absence of RRE to be a nuclear protein localized primarily within the nucleoli. To extend our understanding of the role of Rev in viral replication, immunolocalization studies of Rev and other nuclear components were carried out in transfected cells expressing both the Rev protein and RRE-containing mRNA and in cells infected with HIV. In both types of cells, Rev-like immunoreactivity was distributed both in the nucleoplasm and cytoplasm. Within the nucleus, Rev immunoreactivity was not evenly distributed but was present within focal concentrations. In transfected cells that were double labeled for Rev and SC-35, which labels a known component of spliceosomes, the foci of Rev labeling were distinct from the "speckles" labeled by SC-35, although Rev foci and speckles were often juxtaposed. In addition, morphological changes in the three-dimensional network of speckles were observed in both transfected cells expressing both the Rev protein and RRE-containing mRNA and in cells infected with HIV-1 and HIV-2. Our observations are consistent with the proposed dual role of Rev in mRNA transport and splicing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.