Abstract

Herein we report that Gts1p fused with green-fluorescent protein (GFP) is localized in the cortical actin patch besides nuclei in yeast and the cortical Gts1p changed its position together with the patch depending on the cell-cycle phase, while nuclear Gts1p accumulated predominantly in the budding phase. Whereas Gts1p does not directly bind to actin, it associated mainly with the actin-associated protein Pan1p. In the GTS1-deleted transformant gts1Δ, the number of cells containing either a fragmented vacuole or an enlarged single central vacuole increased and the uptake of the hydrophilic dye Lucifer yellow (LY) in the vacuole decreased. Further, gts1Δ transformed with a mutant Gts1p having two cysteine-to-alanine substitutions in a zinc finger resembling that of GTPase-activating proteins of ADP-ribosylation factors (ARF-GAP) neither recovered the LY uptake unlike gts1Δ transformed with the wild-type GTS1, nor reduced the average size of central vacuoles as much as the latter did. These results suggested that Gts1p in the actin patch is involved in the fluid-phase endocytosis and membrane trafficking for vacuole formation and that the putative ARF-GAP domain in Gts1p plays an important role in these functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call