Abstract
Methylmercury (MeHg) is a toxicant that targets the kidney among other tissues. MeHg accumulates in the kidney, where it indirectly produces oxidative stress due to glutathione depletion and leakage of reactive oxygen species from the mitochondria. Glutathione is believed to have an important role in protecting the kidney against MeHg toxicity, and MeHg exposure is known to result in the induction of GSH synthesis through the upregulation of the enzyme glutamate-cysteine ligase (GLCL). GLCL, the rate-limiting enzyme in GSH synthesis, is composed of two subunits, a large catalytic (GLCLc) and a smaller regulatory (GLCLr) subunit. In this study we show that GLCLc and GLCLr mRNAs and GLCLc protein are localized in the paracortical region of the mouse kidney, the area of the kidney with the highest MeHg concentration, and that the upregulation of these mRNAs induced by MeHg is also located to the same region. This supports the role of GLCL in protection against MeHg toxicity in the kidney.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.