Abstract
Mutations in the fused in sarcoma (FUS) gene are linked to a form of familial amyotrophic lateral sclerosis (ALS), ALS6. The FUS protein is a major component of the ubiquitin-positive neuronal cytoplasmic inclusions in both ALS6 and some rare forms of frontotemporal lobar degeneration (FTLD). The latter are now collectively referred to as FTLD-FUS. In the present study, we investigated the localization of FUS in human and mouse brains. FUS was detected by western blot as an approximately 72kDa protein in both human and mouse brains. Immunohistochemistry using lightly fixed tissue sections of human and mouse brains revealed FUS-positive granular staining in the neuropil, in addition to nuclear staining. Such granules are abundant in the gray matter of the brainstem and spinal cord. They are not frequent in the telencephalon. At the light microscopic level, FUS-positive granules are often co-localized with synaptophysin and present in association with microtubule-associated protein 2-positive dendrites. In the synaptosomal fraction of mouse brain, FUS is detected mainly in the post-synaptic density fraction. Thus, while FUS is primarily a nuclear protein, it may also play a role in dendrites. In the brains of patients with FTLD with TDP-43 deposition (FTLD-TDP), the number of FUS-positive granules in the cortex is increased compared with control cases. The increase in Alzheimer's disease (AD) is less remarkable but still significant. The dendritic localization of FUS and its increase in FTLD-TDP and AD may have some implication for the pathophysiology of neurodegenerative diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.