Abstract
The present paper deals with the quantum coordinates of an event in space-time, individuated by a quantum object. It is known that these observables cannot be described by self-adjoint operators or by the corresponding spectral projection-valued measure. We describe them by means of a positive-operator-valued (POV) measure in the Minkowski space-time, satisfying a suitable covariance condition with respect to the Poincare' group. This POV measure determines the probability that a measurement of the coordinates of the event gives results belonging to a given set in space-time. We show that this measure must vanish on the vacuum and the one-particle states, which cannot define any event. We give a general expression for the Poincare' covariant POV measures. We define the baricentric events, which lie on the world-line of the centre-of-mass, and we find a simple expression for the average values of their coordinates. Finally, we discuss the conditions which permit the determination of the coordinates with an arbitrary accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.