Abstract
The subcellular localization of endothelial nitric-oxide synthase (eNOS) is critical for optimal coupling of extracellular stimulation to nitric oxide production. Because eNOS is activated by Akt-dependent phosphorylation to produce nitric oxide (NO), we determined the subcellular distribution of eNOS phosphorylated on serine 1179 using a variety of methodologies. Based on sucrose gradient fractionation, phosphorylated-eNOS (P-eNOS) was found in both caveolin-1-enriched membranes and intracellular domains. Co-transfection of eNOS with Akt and stimulation of endothelial cells with vascular endothelial growth factor (VEGF) increased the ratio of P-eNOS to total eNOS but did not change the relative intracellular distribution between these domains. The proper localization of eNOS to intracellular membranes was required for agonist-dependent phosphorylation on serine 1179, since VEGF did not increase eNOS phosphorylation in cells transfected with a non-acylated, mistargeted form of eNOS. Confocal imaging of P-eNOS and total eNOS pools demonstrated co-localization in the Golgi region and plasmalemma of transfected cells and native endothelial cells. Finally, VEGF stimulated a large increase in NO localized in both the perinuclear region and the plasma membrane of endothelial cells. Thus, activated, phosphorylated eNOS resides in two cellular compartments and both pools are VEGF-regulated to produce NO.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.