Abstract

The localization of pectin, cellulose, xyloglucan, and callose was compared in kiwifruit (Actinidia deliciosa [A. Chev.] C. F. Liang and A. R. Ferguson var. deliciosa "Hayward") at harvest, at the end of the first phase of softening, and when ripe. Pectin was visualized using three different methods: labeling of galacturonic acid residues, labeling of negatively charged groups, and labeling with JIM 5 (nonesterified residues) and JIM 7 (methyl-esterified) monoclonal antibodies. Labeling of pectin gave different results depending on the detection system used. Differences related to patterns of change during ripening and to spatial distribution of label intensity. Cell wall pectin was available for labeling at all stages of fruit softening, but no clear differentiation of the middle lamella region was seen, although JIM 5 binding predominated where the middle lamellae joined the intercellular spaces in unripe fruit. Negatively charged groups (cationic gold labeling) and, to a lesser extent, galacturonic acid residues (Aplysia depilans gonad lectin labeling) were preferentially located near the cell wall/plasma membrane boundary. The lack of strong binding of the JIM antibodies indicated that the reactive groups were inaccessible. Cellulose remained intact and labeled densely across the wall at all stages of fruit ripening. Distribution of xyloglucan was patchy at harvest but was scattered throughout the wall later in ripening. Alterations to labeling of xyloglucan indicated that some epitopes were differentially exposed. Plasmodesmatal regions were clearly different in composition to other wall areas, showing an absence of cellulose labeling, specific pectin labeling, and callose presence. A similar predominance of pectin labeling compared with cellulose also occurred at the middle lamella wedge near intercellular spaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call